Профессор Преображенский из «Собачьего сердца» Михаила Булгакова искал лекарство от старости, а создал Шарикова. В своей книге «Против часовой стрелки: Что такое старение и как с ним бороться» биолог и научный журналист Полина Лосева рассказывает о том, чем сегодня занимаются геронтологи и как правильно интерпретировать полученные ими результаты. Что думают ученые о процессе старения, что запускает и ускоряет этот механизм? И можно ли считать старость побочным эффектом молодости? С разрешения издательства «Альпина нон-фикшн» «Лента.ру» публикует фрагмент книги Полины Лосевой.
Теория запрограммированного старения не находит сегодня широкой поддержки в научном сообществе, но из нее выросло гораздо более элегантное объяснение процессов, которые происходят в организме с течением времени. Что, если программа действительно существует, но в ней записаны не старость и смерть, а молодость и развитие? И в какой-то момент, когда сил у организма уже недостаточно, а расти дальше некуда, эта программа не выключается, а продолжает крутиться, заставляя его работать на полную катушку, как будто молодость длится вечно. Но ресурсы ограничены, а износ неизбежен, и возникает старость — побочный эффект, неприятное следствие программы вечной молодости. В таком случае лучшее, что мы можем ей противопоставить, — терпение, ожидание, смирение и замедление развития.
Все лучшее — детям
Современная эволюционная теория старения довольно далеко ушла от того, что предлагал Август Вейсман полтора века назад. В 1930 году Рональд Фишер, создавая свою теорию эволюционной генетики, заметил, что сила действия естественного отбора зависит от плодовитости, поэтому со временем он должен ослабевать по мере того, как организм теряет возможность размножаться. За эту идею позже ухватился Питер Медавар, больше известный как иммунолог и лауреат Нобелевской премии за открытие механизмов отторжения трансплантата. Медавар сформулировал теорию накопления мутаций: старение, с его точки зрения, вызвано накоплением губительных мутаций, которые не отсеивает естественный отбор, поскольку проявляются они только после определенного возраста.
Если теория Медавара верна и действие естественного отбора слабеет с возрастом, то гены, которые работают в молодых клетках, должны быть консервативны. Это значит, что их последовательности не должны в среднем сильно различаться у разных людей, а вот в последовательностях других генов, которые в старости активны, разброс должен быть гораздо выше. Недавно ученые сравнили такие наборы «генов молодости» и «генов старости» и обнаружили, что разброс в последовательностях действительно различается, особенно в генах, связанных с апоптозом (гибелью клеток) и воспалением. Правда, это касается в основном генов, которые активны в мозге, печени и легких, в мышцах же, почках и коже разницы между двумя группами генов не нашли. Возможно, это означает, что некоторые органы более критичны для процессов старения, чем другие.
Следующий шаг сделал биолог Джордж Уильямс: он предположил, что эти «вредные» мутации накапливаются неслучайно. Напротив, они могут быть полезны на ранних этапах жизни организма и поэтому закрепляются в популяции. Это явление Уильямс назвал антагонистической плейотропией. Плейотропия — это множественность функций какого-либо гена или белка. А антагонизм, то есть противоположность действий, здесь разнесен во времени: тот ген, а точнее, та мутация в гене, которая увеличивает жизнеспособность организма в молодости, в старости, наоборот, ухудшает его состояние.
Со времен Уильямса ученые нашли печать естественного отбора на множестве генов человека. Антагонистической плейотропией обладает, например, ген p53, кодирующий белок, который вызывает остановку деления, старение и апоптоз. Носители «ослабленного» варианта р53 чаще болеют раком, но дольше живут, если с этой болезнью справились. Носители «усиленного» варианта страдают онкологическими болезнями реже, зато живут меньше. То есть ген р53 приобрел мутацию, которая мешает организму жить долго, поскольку слишком активный белок выводит из строя одну клетку за другой. Но эта мутация поддерживается естественным отбором, поскольку в молодости, пока клеток много, эта особенность р53 организму не вредит, а только помогает справиться с раком.
Похожая история, судя по всему, произошла с геном АРОЕ. О нем мы тоже уже говорили — в главе, посвященной возрастным заболеваниям. Вариант АРОЕ е4 считается одним из главных генетических факторов риска для болезни Альцгеймера, и против него даже разрабатывается генная терапия. В то же время он может быть связан с повышенной плодовитостью: у его носительниц повышена концентрация прогестерона (гормона беременности) в крови по сравнению с носительницами других вариантов этого гена. По некоторым данным, АРОЕ е4 связан также с умственными способностями, а еще с устойчивостью к инфекциям: его носители лучше переносят заражение вирусами гепатита В и С, а дети из бразильских трущоб с АРОЕ е4 реже страдают диареей. Все эти проявления укладываются в теорию антагонистической плейотропии: поскольку большинство потенциальных эффектов АРОЕ е4 проявляется на ранних этапах жизни, его разрушительное действие на нервную систему пожилых людей ускользает из зоны внимания естественного отбора.
Чаще всего губительные мутации «покупают» себе место в геноме, повышая шансы молодых особей на размножение. Но если посмотреть шире, то можно заметить, что самые разные процессы, которые приводят к изнашиванию организма и старению клеток, могут быть в чем-то благоприятны для организма. Любая жизненно важная биохимическая реакция в клетке, будь то клеточное дыхание или синтез белков, порождает токсичные продукты обмена и по сути своей служит примером антагонистической плейотропии. В молодости важно дышать и получать много энергии, а результаты действия свободных радикалов проявятся когда-нибудь потом.
Практически любой процесс, который нам кажется патологическим, может принести пользу для организма. Метилирование ДНК и потеря доступа к генетической информации важны для развития: дети, которые рождаются с повышенным эпигенетическим возрастом, лучше растут и набирают вес, чем их более «молодые» с точки зрения метилирования сверстники. Перемещение ретротранспозонов по ДНК, с одной стороны, вызывает мутации, а с другой — способствует развитию нервных клеток (об этом говорилось в главе «Молекулы: мусорная катастрофа»). Воспаление полезно для борьбы с инфекцией и уборки мусора, но в стареющем организме превращается в оружие борьбы с самим собой.
Геронтолог из Ливерпуля Жуан де Магальяеш назвал этот феномен «близоруким часовщиком». Это, безусловно, отсылка к «слепому часовщику» — метафоре, которую придумал Ричард Докинз для естественного отбора, чтобы показать, что этот принцип позволяет вслепую собрать точный и совершенный объект, живой организм. Но с точки зрения геронтологов отбор не столько слеп, сколько недальновиден: отбирая то, что приносит пользу здесь и сейчас, он «не задумывается» о последствиях, и за его поспешные решения нам всем предстоит расплачиваться в старости.
Такая точка зрения может казаться пессимистичной, но только на первый взгляд. Ведь если старение вызвано накоплением конкретных вредоносных мутаций, то что мешает назвать его генетической болезнью и относиться к нему соответственно? Можно представить себе, что мы сейчас находимся еще на этапе изучения этой болезни и пока только собираем информацию о генах, которым свойственна антагонистическая плейотропия. А потом, вероятно, научимся их чинить и заменять на более благоприятные для долгой жизни варианты. Правда, исправлять такие гены придется не в начале жизни, а в середине, но это и к лучшему: методы генной терапии у взрослых сейчас вызывают гораздо меньше вопросов — как с точки зрения этики, так и по части методологии, — чем редактирование генов у эмбрионов.
Хорошего — понемножку
Если теория антагонистической плейотропии верна, то это значит, что в старом организме протекают те же процессы, что и в молодом. В таком случае старение можно рассматривать как непосредственное и излишнее продолжение развития. Поэтому американский геронтолог Михаил Благосклонный предложил считать деградацию организма результатом не программы старения, а программы молодости, или квазипрограммы. Этот подход позволяет объяснить два, казалось бы, противоречивых факта: старение вытекает из одних и тех же процессов, но в каждом организме проходит по-своему. Именно потому, что развитие запрограммировано жестко, а старение лишь намечено общими контурами, первое проходит у всех примерно одинаково, а второе, напротив, крайне гетерогенно. М. Благосклонный сравнивает старение с хождением вслепую: «…чем дольше вы блуждаете с закрытыми глазами, тем сильнее отклоняетесь от намеченной траектории».
Старость, по Благосклонному, предстает в виде гиперфункции, гипертрофированного проявления программы развития. Каждое нарушение, которое возникает с возрастом, можно объяснить через преувеличенное, избыточное или ненужное продолжение какого-либо процесса развития. Например, старческая гипертония — это итог непрерывного повышения давления. Человек появляется на свет с низким артериальным давлением, и это оправдано его небольшим размером — сердцу не нужно сильно прокачивать кровь, чтобы она дошла до кончиков пальцев. По мере того как ребенок растет, а тело его становится длиннее, мышечные волокна в стенках сосудов постепенно сжимаются, уменьшая просвет сосуда и увеличивая давление. Так оно достигает значений, характерных для взрослого здорового человека. Но, будучи один раз запущена, программа не выключается, — и давление продолжает расти, пока не превращается в гипертонию, типичное возрастное состояние.
То же происходит и со зрением: пока ребенок маленький, ему важно рассматривать близко расположенные объекты, и минимальное фокусное расстояние — то, на котором он различает предмет, — у него всего несколько сантиметров. С возрастом для человека становятся важны и более далекие объекты, поэтому хрусталик (линза, которая преломляет свет в глазу) растет и становится жестче и минимальное фокусное расстояние достигает 16 см в 40 лет, а к 60 может дойти до 100 см. Так развивается дальнозоркость, которую часто можно встретить у пожилых людей.
Подобные механизмы можно найти в составе самых разных возрастных болезней. Чрезмерное свертывание крови вызывает тромбоз, избыточное воспаление — аутоиммунные реакции, неумеренное накопление жирных кислот — ожирение. Все это Благосклонный считает следствием того, что у программы развития нет естественного выключателя. Чем быстрее растет организм, тем лучше для размножения, и так ли важно, что будет потом? Поэтому нет никакого повода обзаводиться системой сдержек, и если маховик раскручен, организму уже не под силу его остановить.
В отличие от теории квазипрограммы, которая напрямую продолжает идею антагонистической плейотропии, теория гиперфункции пока не нашла большой поддержки в научном сообществе. Геронтолог из Гарварда Вадим Гладышев, например, считает, что гиперфункция плохо стыкуется с накоплением молекулярных повреждений. Если старение вызвано чрезмерной активностью клеток, то как быть с системой внутриклеточного ремонта, которая, наоборот, с возрастом работает все хуже?
К тому же если главная причина старения — в гиперфункции, а молекулярный мусор не так важен для продолжительности жизни, то системы, которые этот мусор производят, должны ускользать из-под контроля естественного отбора. В таком случае они должны производить все больше и больше мусора (потому что ломать гораздо дешевле, чем чинить) — пока поломок не станет так много, что они начнут сокращать жизнь наравне с гиперфункцией органов. Это тот же аргумент про бочку с вытекающей водой и короткой дощечкой, с которого я начала разговор о причинах старения: ни одна не может быть главной, все системы защиты от старости работают одинаково плохо.
У М. Благосклонного и на это находятся свои аргументы. Ни один человек, говорит он, не умирает от накопления в клетках молекулярного мусора. А также от укорочения теломер, истощения клеточных запасов или износа тканей. Люди умирают от инфарктов, инсультов и опухолей — катастрофических событий внутри тела, когда те или иные органы перестают работать. А эти события, в свою очередь, напрямую вызваны гиперфункцией физиологических процессов: повышенным давлением, разрушением костей, ожирением и десятками других. Молекулярный мусор и поломки, безусловно, накапливаются в клетках и между ними, но не успевают привести организм к смерти, катастрофа случается раньше.